OPERATING PRINCIPLE

An evaporator is the centerpiece of maple syrup production. It is with evaporation that the flavor and color of maple syrup will develop. The taste of the maple develops in flat pans (Maillard reaction) but to have a good efficiency, the ratio of flat and flue pans is important.

The Tradition Evaporator is also available with grate and blower option with an insulated door.
# Table of Content

- OPERATING PRINCIPLE ...................................................................................................................................................... 2
- SAFETY INSTRUCTION AND DESCRIPTION .......................................................................................................................... 4
- INSTALLATION ................................................................................................................................................................... 5
  - BEFORE STARTING: ....................................................................................................................................................... 5
  - LEVEL THE EVAPORATOR ............................................................................................................................................. 6
  - CERAMIC WOOL INSTALLATION/WALLS ...................................................................................................................... 7
  - FIREWALLS POSITIONING ............................................................................................................................................. 9
  - FIREWALLS POSITIONING SCHEME .......................................................................................................................... 10
  - BRICKWORK ............................................................................................................................................................... 12
  - SUCCESSFULLY ACHIEVE YOUR BRICKWORK .............................................................................................................. 12
  - “HARDWARE” INSTALLATION .................................................................................................................................... 16
  - INLET FLOAT BOX ....................................................................................................................................................... 16
  - TRANSFER FLOAT BOX ................................................................................................................................................ 17
  - FLOAT BOX ................................................................................................................................................................. 18
  - GRATE AND BLOWER OPTION .................................................................................................................................... 18
- ABOUT THE WOOD ......................................................................................................................................................... 19
- OPERATION ..................................................................................................................................................................... 20
  - WARNING BEFORE FIRST USE .................................................................................................................................... 20
  - BASICS ........................................................................................................................................................................ 20
  - DRAFT ADJUSTMENT .................................................................................................................................................. 21
- TROUBLESHOOTING ........................................................................................................................................................ 22
  - INCONSTENT LEVEL IN PANS ...................................................................................................................................... 22
  - MAKING SYRUP BEFORE THE FINISHING PAN ........................................................................................................... 22
  - INTENSE HEAT AT THE FRONT, DOORS HOTTER THAN USUAL, RED DOORS C .............................................................................................................................................................................. 22
- MAINTENANCE ................................................................................................................................................................ 23
  - WHEN TO CLEAN PANS .............................................................................................................................................. 23
  - CLEANING PANS ......................................................................................................................................................... 23
  - STORAGE BETWEEN SEASONS ................................................................................................................................... 24
  - WATER QUANTITY IN THE WATER PAN – US GALLON (level equal with the flue) ..................................................... 25
  - PERFORMANCE – EVAPORATION IN GALLONS OF WATER PER HOUR ................................................................. 26
- WARRANTY ..................................................................................................................................................................... 27
SAFETY INSTRUCTION AND DESCRIPTION

A wood evaporator is a dangerous piece of equipment. You should always wear heat-resistant gloves and clothes when operating the evaporator.

While having visitors, especially children, make sure they keep a safe distance from the evaporator.

A wood evaporator uses wood as fuel and gives off intense heat at the smoke stack and at the front of the arch. Make sure the floor is strong enough to support the weight of the evaporator and its components. Keep a minimum distance of 48” between the wall and the evaporator and 36” at the rear. If you can not maintain that minimum distance, a heat-resistant sheathing must be installed to protect the wall.

Pay a special attention to make sure you will be able to open the door completely to feed the evaporator, but also to ensure a safe working space when the door is open.

Make sure your smoke stack and steam hood are not obstructed. Install a roof jack for each stack. It is highly recommended to have a ceiling high enough to allow you to lift the hood using a pulley system.

*We recommend you contact your insurance company to ensure you are respecting their safety standards. Each company has its own safety rules.*
INSTALLATION

If your sugarhouse is well insulated, you will have to create air inlets to improve your evaporator combustion and steam evacuation.

For more information on setting up the evaporator, follow the link below to see our educational video:
https://www.bing.com/videos/search?q=how+to+brick+an+evaporator&&view=detail&mid=58411AB3010273AB10CD58411AB3010273AB10CD&FORM=VRDGAR

NOTE: Pictures on the following pages are of a Tradition evaporator, however all installation principles remain the same for the Rookie.

BEFORE STARTING:

Ensure you have all the following tools on hand before getting started:

- Level
- Precision knife
- Measuring tape
- High temperature refractory cement
- Trowel
- Bucket of water (2) and sponge
- Tile saw
- Gloves
- Safety glasses
LEVEL THE EVAPORATOR

Make sure the floor is strong enough to support the weight of the evaporator and its components. Ensure you are meeting the safety standards of your insurance company.

NOTE: To improve the evaporator efficiency, combustion and steam evacuation, you can first elevate it by using concrete blocks.

- Remove the wheels under the evaporator.
- Remove the pans on the evaporator. Level first the evaporator on the width.
- Adjust the level on the length by using the adjustable legs at the rear of the evaporator.
- If there are legs in the center of your evaporator, use them to finalize level adjustment.
- Always confirm with a carpenter level.
- When the evaporator is leveled (length and width) tighten the nuts at the bottom of the legs.

Install the grates in the evaporator.
CERAMIC WOOL INSTALLATION/WALLS

Measure the evaporator inside walls
According to your measurements, cut the wool and install it on the inside walls of the evaporator.

Cut wool where there are bumps to ensure it will hold its position.

Put one (1) layer of wool and one (1) layer of bricks on each side of your evaporator OR three (3) layers of wool if you are not putting brick.
FIREWALLS POSITIONING

When wool is placed, you can install the firewalls.

*FIREWALL #1 must be installed 16” distance under the flue pan with a slope of about 30°. Final distance between the firewall top and the pan, including wool and brick height (about 2”), must be 3”. This 3” space is necessary for air circulation and heat transfer in the flue pan. See explanatory sketch on next page.

*FIREWALL #2 must be installed 14” distance under the flue pan end with a slope about 30°. Final distance between the firewall top and the pan, including 2” of wool height, must be ¼”.

NOTE: Those values are indicative only. The firewalls position has a direct impact on the evaporator draft and performance. It is recommended not to fix the firewalls. No sugar house is the same (orientation, elevation...), then after a season validate the firewalls positioning.

Picture below shows firewall #1 installation.
FIREWALLS POSITIONNING SCHEME

Below, firewalls positioning scheme (not to scale):

**TOP VIEW**

16” under the flue pan, 14” from the base stack to the firewall #2, length between firewalls will depend of evaporator size.

**SIDE VIEW**
Install wool in the bottom of the evaporator, then you can start the brickwork.
BRICKWORK

NOTE: Bricks are not included with the evaporator. Please consult table below for the approximative quantity to be used.

<table>
<thead>
<tr>
<th>DIMENSION</th>
<th>Nombre Approximatif de Briques</th>
</tr>
</thead>
<tbody>
<tr>
<td>18” X 66”</td>
<td>80</td>
</tr>
<tr>
<td>2’ X 6’</td>
<td>80</td>
</tr>
<tr>
<td>2’ X 8’</td>
<td>100</td>
</tr>
<tr>
<td>2’ ½ X 8’</td>
<td>125</td>
</tr>
<tr>
<td>2’ ½ X 10’</td>
<td>125</td>
</tr>
<tr>
<td>3’ X 10’</td>
<td>160</td>
</tr>
<tr>
<td>3’ X 12’</td>
<td>160</td>
</tr>
<tr>
<td>4’ X 12’</td>
<td>170</td>
</tr>
<tr>
<td>4’ X 14’</td>
<td>180</td>
</tr>
<tr>
<td>5’ X 14’</td>
<td>210</td>
</tr>
<tr>
<td>5’ X 16’</td>
<td>215</td>
</tr>
<tr>
<td>6’ X 14’</td>
<td>325</td>
</tr>
<tr>
<td>6’ X 16’</td>
<td>350</td>
</tr>
</tbody>
</table>

Two size of bricks are available: 1” ¼ and 2” ½.
With evaporator more than 2’ width, always use the 2” ½ bricks. When using 2” ½ bricks, you must cut an angle on the last bricks at the top of the combustion chamber. This will allow a good heat transfer. If you have the grate and blower option, always use the 2’ ½ bricks.

SUCCESSFULLY ACHIEVE YOUR BRICKWORK

Let the refractory cement allow to dry at least for 24 hours. After 24 hours, inspect the joints and fill the cracks with refractory cement.

Leave about ¼” space between the last row of bricks and the evaporator side to ensure bricks will not move too much. Bricks set too tight may crack and/or break the refractory cement.
Start the brickwork next to the evaporator door.

Brickwork shall be done perpendicular to the floor. When the cement is completely dried, tilt the brick wall so that it leans on the inner wall of the evaporator. Leave about ¼” space between the last row of bricks and the evaporator side.
Apply pressure on the wall to ensure it will not move.

Finish the brickwork at the rear of the evaporator (where the stack is).
For the top brick row, when using brick size 2” ½, cut bricks in angle. This will clear the flue pan underside allowing better heat transfer in the pan. No need to cut the 1” ¼ bricks.

Once brickwork is done, install insulation strip on the length sides of the evaporator.

Hardware can then be installed.

For more information on setting up the evaporator, follow the link below to see our educational video:
https://www.bing.com/videos/search?q=how+to+brick+an+evaporator&&view=detail&mid=58411AB3010273AB10CD58411AB3010273AB10CD&FORM=VRDGAR
**“HARDWARE” INSTALLATION**

- Install the stack.
- Replace the pans on the evaporator starting by the rear sap pan (the biggest), place it on the collar at the back. Then install the syrup pans in the front.
- Install the roof jack for each of your stacks. Seal the joint to prevent leakage. Install the steam pipe (if applicable). Install the smoke pipe. Check carefully the direction of the prevailing wind.
- Attach steel cables to the pipes to keep them in place. Do not overtighten the cables as the stack expands as it warms up.
- Install the float boxes and connections. To avoid leaks, put Teflon tape on each of the threads. Do not thread stainless to stainless without using Teflon tape, it will seize up.

**INLET FLOAT BOX**

Inlet float box components and connections.

1. MODIFIED HANDLE VALVE FOR FLOAT BOX
2. COMPLETE INLET FLOAT BOX
3. REINFORCED SANITARY CLAMP
4. TRI CLAMP SEALING GASKET
TRANSFER FLOAT BOX

Transfer float box components and connections. The Rookie transfer float box has a flat bottom without the settling tank.

1. MODIFIED HANDLE VALVE FOR FLOAT BOX
2. REINFORCED SANITARY CLAMP
3. TRI-CLAMP SEALING GASKET
4. TRANSFER FLOAT BOX
5. FLUE PAN TO FLAT PAN TRANSFER WITH CLAMP AND O-RING
6. SANITARY BUTTERFLY VALVE WITH VANNE PAPILLON SANITAIRE AVEC TRI-CLAMP FERRULE
7. FLUE PAN TO FLAT PAN TRANSFER WITH CLAMP AND O-RING

To adjust the sap level, use the screw on the picture below. Unscrew to raise the level and screw to lower it.
FLOAT BOX

H2O Innovation float boxes have an adjustable inlet as for all conventional float boxes. Its major
difference is its settling tank allowing sugar sands to settle instead of going on the flat pans. At
the bottom of the settling tank, there is a 1” valve to allow easy and quick removal of sugar sands.
The float box with a settling tank comes with the Tradition evaporator but not with the Rookie.

GRATE AND BLOWER OPTION

The Tradition evaporator is also available with the grate and blower option. With this option, it is
highly recommended to have an insulated door.

By adding a variable speed blower, this option offers a better temperature control and it increases
the evaporator draft. You will then have a faster and more uniform boiling pattern. This option
will increase efficiency about 10%.

Blower adjustment will depend on your wood quality. Be careful, even if the bower is variable
speed, it is not made to run at maximum speed, and this is not recommended either. If you see
your stack becoming purple or the cast iron changing of color, your blower speed is certainly too
high. Slow down blower speed.
ABOUT THE WOOD

Wood quality will have a major impact on your evaporator performance. A poor wood quality will reduce the evaporation level, more wood loading and darker syrup. For example, oak gives 29 million BTU per cord vs 16 million for pine (see table below). Wood should not be green and should have dried at least one year; the moisture content should be less than 20% and the wood diameter should be less than 8”.

<table>
<thead>
<tr>
<th>Essence</th>
<th>Latin name</th>
<th>Wood</th>
<th>Rendement/Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chêne blanc</td>
<td>Quercus alba</td>
<td>White oak</td>
<td>30.8</td>
</tr>
<tr>
<td>Caryer ovale</td>
<td>Carya Ovata</td>
<td>Shagbark hickory</td>
<td>30.6</td>
</tr>
<tr>
<td>Pommier</td>
<td>Malus</td>
<td>Apple tree</td>
<td>30.0</td>
</tr>
<tr>
<td>Caryer cordiforme</td>
<td>Carya Ovata</td>
<td>Bitternut hickory</td>
<td>29.2</td>
</tr>
<tr>
<td>Érable à sucre</td>
<td>Acer saccharum</td>
<td>Sugar maple</td>
<td>29.0</td>
</tr>
<tr>
<td>Hêtre américain</td>
<td>Fagus grandifolia</td>
<td>American beech</td>
<td>27.8</td>
</tr>
<tr>
<td>Chêne rouge</td>
<td>Quercus rubra</td>
<td>Northern red oak</td>
<td>27.2</td>
</tr>
<tr>
<td>Bouleau jaune(merisier)</td>
<td>Betula alleghianiensis</td>
<td>Yellow birch</td>
<td>26.2</td>
</tr>
<tr>
<td>Frêne d’Amérique</td>
<td>Fraxinus americana</td>
<td>American ash</td>
<td>25.0</td>
</tr>
<tr>
<td>Orme d'Amérique</td>
<td>Ulmus americana</td>
<td>American elm</td>
<td>23.8</td>
</tr>
<tr>
<td>Érable rouge</td>
<td>Acer rubrum</td>
<td>Red maple</td>
<td>23.8</td>
</tr>
<tr>
<td>Cerisier tardif</td>
<td>Prunus serotina</td>
<td>Wild black cherry</td>
<td>23.5</td>
</tr>
<tr>
<td>Bouleau à papier</td>
<td>Betula papyrfera</td>
<td>Paper birch</td>
<td>23.4</td>
</tr>
<tr>
<td>Cerisier noir</td>
<td>Prunus pensylvanica</td>
<td>Black cherry</td>
<td>23.1</td>
</tr>
<tr>
<td>Bouleau gris</td>
<td>Betula populifolia</td>
<td>Gray birch</td>
<td>22.7</td>
</tr>
<tr>
<td>Frêne noir</td>
<td>Frainus nigra</td>
<td>Black ash</td>
<td>22.6</td>
</tr>
<tr>
<td>Érable argenté</td>
<td>Acer saccharinum</td>
<td>Silver maple</td>
<td>21.7</td>
</tr>
<tr>
<td>Peuplier faux tremble</td>
<td>Populus tremuloides</td>
<td>Quaking aspen</td>
<td>17.7</td>
</tr>
<tr>
<td>Noyer cendré</td>
<td>Juglans cinerea</td>
<td>White walnut</td>
<td>17.4</td>
</tr>
<tr>
<td>Peuplier baumier</td>
<td>Populus balsamifera</td>
<td>Balsam poplar</td>
<td>17.0</td>
</tr>
<tr>
<td>Tilleul d'Amérique</td>
<td>Tilia americana</td>
<td>American basswood</td>
<td>17.0</td>
</tr>
<tr>
<td>Mélèze</td>
<td>Larix laricina</td>
<td>Larch</td>
<td>24.1</td>
</tr>
<tr>
<td>Épinette rouge</td>
<td>Picea rubens</td>
<td>Red spruce</td>
<td>19.3</td>
</tr>
<tr>
<td>Pruche</td>
<td>Tsuga canadensis</td>
<td>Hemlock</td>
<td>17.9</td>
</tr>
<tr>
<td>Pin blanc</td>
<td>Pinus strobus</td>
<td>White pine</td>
<td>17.1</td>
</tr>
<tr>
<td>Thuya occidental</td>
<td>Thuja occidentalis</td>
<td>Western white cedar</td>
<td>16.3</td>
</tr>
<tr>
<td>Épinette blanche</td>
<td>Picea glauca</td>
<td>White spruce</td>
<td>16.2</td>
</tr>
<tr>
<td>Sapin baumier</td>
<td>Abies balsamea</td>
<td>Balsam fir</td>
<td>15.5</td>
</tr>
</tbody>
</table>

Important: Use only dry wood without paint or chemicals. Never use plastics, tires, coal or any other fuel. Using unauthorized products will void the warranty.
OPERATION

WARNING BEFORE FIRST USE

When first using your evaporator, remove any traces of packaging debris, manufacturing debris and residual oils: wash the pans and all components that might be in contact with sap. Wash all components with soapy water and rinse thoroughly with hot water. You can also add the equivalent of one cup of commercial white vinegar per gallon (4L) of soapy solution.

BASICS

NOTE: At the season beginning, before starting your evaporator, consult the “water quantity in the flue pan” section on page 25 to know which sap quantity is to be used in your evaporator.

1. Make sure the outlet of the tank feeding the evaporator is at least 12” higher than the level in the rear pan. Connect the tank with the rear float box.
2. Install a thermometer or a temperature controller at the outlet of the rear pan. Calibrate it in boiling water, adjust its temperature to 0°F.
3. Open the smoke stack hinged cover of the smoke pipe.
4. Open the valve of the feeding tank. Fill up the flue pan until the level reaches 2” above the flues. After starting the evaporator, stabilize the sap level 1” above the flues. Adjust the rear float to maintain sap level.
5. Adjust the float arm in horizontal position. Open the front float box valve and fill the syrup pans up to 1” ½ with sap. Adjust the front float to maintain this level.

To adjust the water level, use the screw on the picture below:

- Unscrew to raise the level.
- Screw to lower the level.
6. During the season, frequently clean O-ring, clamp and ferrule because sugar deposits could affect the sealings of the connections. Use food grade grease for each component in contact with sap or maple syrup.

7. For the first firing, fill ¼ of the combustion chamber before firing. If temperature rises too much it’s possible that the cement may crack.

8. Prepare a fire in the firebox. Use hard wood, diameter about 2-3’’ or 4-6’’ for bigger evaporator, length from 20 to 36’’. Fully fill the fire box up to 8’’ of the syrup pan. Keep a minimum distance of 8’’ between the fire and the door. Lite the fire.

9. When the evaporator is in production mode, reload the wood at ¼ of the combustion chamber (always cross the wood). When boiling seems to be going down, reload the combustion chamber. Do not wait too long to avoid a loss of performance.

10. Pay attention to the front and rear water level. Use the screw on the floats to adjust the level.

11. Maple syrup is ready when its temperature reaches 7°F above boiling point of water – the boiling point is collated with atmospheric pressure. Open the valve when syrup is reaching this temperature and close it when the temperature starts to drop.

12. Repeat the operation each time the temperature reaches 7°F above boiling point of water. While using a thermo regulator it will automatically control the valves compensating the boiling point with the atmospheric pressure.

13. After gaining experience, you will be able to lower the level in the pans. The ideal level is 1” above the flues of the flue pan and 1”1/2-2” in the flat pan. Do not lower the level too much, the lower the level is, the faster it will boil so risks of burning the pans will increase.

NOTE: Anti-foam can be required when operating the evaporator. When syrup is generating too much foam it can affect the float box causing instability on the water level and a risk of lack of sap. Anti-foam also prevents spills of syrup.

DRAFT ADJUSTMENT
Draft adjustment on a wood evaporator is done by adjusting the space between the stack and the bottom back of the evaporator. Closer the space is, weaker will be the draft. Return of smoke in the sugar house is a good indication of a lack of draft. It is then necessary to increase the space. This space needs to be cleaned periodically to ensure it is not obstructed. Have at least 3’ stack above the top of the roof and a minimum of one and a half the length of the evaporator. If the draft is insufficient add an additional pipe section. Frequently clean the ash from under the grates. If there is not enough room under the grates they will deform.
TROUBLESHOOTING

INCONSTENT LEVEL IN PANS

• Realign the float box arm.
• Syrup makes too much foam and impacts the reading of the float. Use anti-foam.
• Dismantle the float box and clean it. There might be dirt that prevents the box from closing tight.
• Clean the O-ring on the float box.
• There is a leak in the float and it is getting filled with sap.
• Sap tank is too high putting too much pressure on the float box.
• Sap tank is too low and there is not enough pressure to push over the float box.

MAKING SYRUP BEFORE THE FINISHING PAN

• When happening, open the valve to fill up your draw-off syrup tank until the temperature is adjusted. Then put back (slowly and by small quantity) the syrup at the beginning of the flue pan.
• Increase the draft in order to decrease the heat on the first finishing pan.

INTENSE HEAT AT THE FRONT, DOORS HOTTER THAN USUAL, RED DOORS C

• Not enough draft, adjust evaporator draft.
• Wood too close of the doors. It must be at least 8” from the doors.
• If you have a blower, decrease its speed. Ideally, protect your cast iron door with insulation.
• Cast iron shall never become red.
MAINTENANCE

Daily drain and clean float box, floats and pipes going to the pan.

WHEN TO CLEAN PANS

Pan cleaning frequency depends on the time of the season, on the amount of sugar sand forming at the bottom of the pan and on the size of the evaporator. Check the syrup pan every hour. Immediately, when there is too much deposit at the bottom, replace the pan with a clean one or clean it. Excessive deposits on the pan could burn it. Flue pan cleaning frequency depends on the size of the evaporator and the quantity of sugar sand in sap. Usually, a mid-season cleaning is enough. Again, excessive deposits on the pan could burn it or cause cracks at the bottom of the flue. Your flue pan must be checked every day, pay special attention to the corners.

CLEANING PANS

1. Fill the pans with filtrate or clean water. Fill up to the height of the dividers to make sure you remove any dirt that may have accumulated in your pans. You will remove all the dirt on your pans. If using a H2O pan washer skip next steps.

2. Add pan detergent recommended by H2O Innovation (read label for proper dosage).

3. Heat the water up to 90°C (194°F). Stop the fire. Let it soak all night.

4. Drain and rinse a lot to ensure there is no acid left.

5. Fill the pan again to the top with filtrate or clean water. Use soda polycarbonate to neutralize all acid residues. Let it soak 15 minutes then drain and rinse one last time.

6. Never use abrasive products, steel wool or products containing chlorine or muriatic acid.

7. If there is burnt syrup on the outside of the pans, you can use commercial cold oven cleaner. It will dissolve the syrup without damaging the pans. To bring back the shine of the pans, use industrial foaming cleaner for glass. You can also use a mix of water and white vinegar (half and half).

8. **Note for under pan cleaning**: Never use abrasive products. Take an appropriate brush to rub back and forth under the pan and between flue. If using a pressure washer, make sure the pan is dried quickly after washing: water and soot will turn into acid, causing damage to the pan.
STORAGE BETWEEN SEASONS

**IMPORTANT**: If there is any acid left in the pan between the seasons, the pans will be damaged and punctured at the next season.

1. To allow air circulation around the pans, put them on wood blocks. Excessive humidity could damage the pan.

2. Make sure pans are clean. Remove all the sugar sand by doing a good acid wash. For the flue pan, it is necessary to brush the inside and outside of the flue. Use the appropriate brush.

3. Never use abrasive products, steel wool or products containing chlorine or muriatic acid. Pans will be damaged; those damages are not covered by the warranty.

4. Silicone O-ring shall be greased with food grade grease in order to prevent them from drying.
WATER QUANTITY IN THE WATER PAN – US GALLON
(level equal with the flue)

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Flue Height</th>
<th>US gallon (to fill the flue pan)</th>
<th>US gallon (for each inch above the flue)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3’ X 10’</td>
<td>7”</td>
<td>40.1</td>
<td>13</td>
</tr>
<tr>
<td>4’ X 12’</td>
<td>7”</td>
<td>59.5</td>
<td>20</td>
</tr>
<tr>
<td>4’ X 14’</td>
<td>7”</td>
<td>73.2</td>
<td>25</td>
</tr>
<tr>
<td>5’ X 14’</td>
<td>7”</td>
<td>87.1</td>
<td>31.2</td>
</tr>
<tr>
<td>5’ X 16’</td>
<td>7”</td>
<td>87.1</td>
<td>31.2</td>
</tr>
<tr>
<td>6’ X 14’</td>
<td>7”</td>
<td>104.5</td>
<td>37.5</td>
</tr>
<tr>
<td>6’ X 16’</td>
<td>7”</td>
<td>104.5</td>
<td>37.5</td>
</tr>
</tbody>
</table>

These quantities, although approximate, give a good idea of the volumes to be used.
## PERFORMANCE – EVAPORATION IN GALLONS OF WATER PER HOUR

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Imperial gallon</th>
<th>US gallon</th>
</tr>
</thead>
<tbody>
<tr>
<td>3’ X 10’</td>
<td>90</td>
<td>108</td>
</tr>
<tr>
<td>4’ X 12’</td>
<td>150</td>
<td>180</td>
</tr>
<tr>
<td>4’ X 14’</td>
<td>145</td>
<td>174</td>
</tr>
<tr>
<td>5’ X 14’</td>
<td>210</td>
<td>252</td>
</tr>
<tr>
<td>5’ X 16’</td>
<td>240</td>
<td>288</td>
</tr>
<tr>
<td>6’ X 14’</td>
<td>252</td>
<td>302</td>
</tr>
<tr>
<td>6’ X 16’</td>
<td>288</td>
<td>345</td>
</tr>
</tbody>
</table>

**IMPORTANT:** This table is indicative only. The performance depends on several factors such as the type of wood, the draft, etc. values are +/- 20%
WARRANTY

H2O INNOVATION offers a limited warranty of two years, from the date of original purchase, on all its new evaporators. H2O Innovation undertakes to repair or replace parts with manufacturing or workmanship defects only if the evaporator is used under normal conditions of installation, use and maintenance. H2O Innovation will repair or replace the parts by equivalent new parts, free of charge by the consumer (parts and labor). Defective parts that are replaced become property of H2O Innovation.

The guarantee applying for the cosmetic aspect of the parts or equipment is 7 days only from the date of delivery.

THIS WARRANTY DOES NOT APPLY IF:

- The serial number of the evaporator has been removed or altered.
- There has been use as fuel of: painted wood, treated wood or wood containing chemicals, glue or any other agent.
- There has been use of any other fuel than wood.
- The product has been damaged by negligence or misuse. Repairs or modifications made by the customer. Use of parts other than H2O Innovation parts or use of parts not from an authorized technician.
- The product has been damaged by a cause like: an accident, a water damage, a fire, a natural or human catastrophe
- Damage is caused by misuse of products or use of non-recommended products.
- Operating instructions, installation recommendations, maintenance and storage instructions were not respected.
- Damage is due to electrical connection, overloading, current fluctuations, poor power quality.

THIS WARRANTY DOES NOT COVER:

- Service calls that: do not concern manufacturing defects; for use or installation instructions; to repair insulation or bricking; service calls after two years.
- Breakage of cast iron elements due to overheating or if a blower has been modified.
- Service calls for start-up or end-of-season shutdown.
- Loss of production caused by the quality of syrup or by a problem covered by this warranty.
IMPORTANT: This warranty is only provided to the original purchaser of the equipment. It is not transferable. This warranty may be ended at any time if there is evidence of improper equipment use. H2O Innovation cannot be held responsible for any loss of time, production, property damage or any costs arising from the warranty claim.

How to benefit from this warranty
To report any defect and to know the service you are entitled to under this warranty, contact H2O Innovation at the phone number or address below. Keep all valid proof of payment (receipts, invoice, delivery order) to validate the warranty period. Without valid proof of payment, the guarantee will not be considered valid. After any repair, the end date of the warranty will be the same as the original warranty end date which is the original delivery date of your equipment.
WARNING

Before first use

To remove any traces of packaging debris, manufacturing debris and residual oils:

IT IS IMPORTANT, when first using the evaporator, to wash all pans, stainless steel pipes, fittings, all components that might be in contact with sap, with soapy water and then to rinse abundantly with hot water. You can also add the equivalent of one cup of commercial white vinegar per gallon (4L) of soapy solution.